Blind Unwrapping of Modulo Reduced Gaussian Vectors: Recovering MSBs From LSBs

نویسندگان

چکیده

We consider the problem of recovering $n$ i.i.d samples from a zero mean multivariate Gaussian distribution with an unknown covariance matrix, their modulo wrapped measurements, i.e., measurement where each coordinate is reduced $\Delta$, for some $\Delta>0$. For this setup, which motivated by quantization and analog-to-digital conversion, we develop low-complexity iterative decoding algorithm. show that if benchmark informed decoder knows matrix can recover sample small error probability, large enough, performance proposed blind recovery algorithm closely follows one. complement analysis numeric results performs well even in non-asymptotic conditions.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Recovering zeros of polynomials modulo a prime

Let p be a prime and Fp the finite field with p elements. We show how, when given an irreducible bivariate polynomial F ∈ Fp[X,Y ] and an approximation to a zero, one can recover the root efficiently, if the approximation is good enough. The strategy can be generalized to polynomials in the variables X1, . . . , Xm over the field Fp. These results have been motivated by the predictability probl...

متن کامل

Recovering Distributions from Gaussian RKHS Embeddings

Recent advances of kernel methods have yielded a framework for nonparametric statistical inference called RKHS embeddings, in which all probability distributions are represented as elements in a reproducing kernel Hilbert space, namely kernel means. In this paper, we consider the recovery of the information of a distribution from an estimate of the kernel mean, when a Gaussian kernel is used. T...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Transactions on Information Theory

سال: 2021

ISSN: ['0018-9448', '1557-9654']

DOI: https://doi.org/10.1109/tit.2021.3053426